Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mar Sci ; 62019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31534948

RESUMO

There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017-2019) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.

2.
Biogeosciences ; 15(14): 4515-4532, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32676124

RESUMO

Fixation of organic carbon by phytoplankton is the foundation of nearly all open-ocean ecosystems and a critical part of the global carbon cycle. But quantification and validation of ocean primary productivity at large scale remains a major challenge, due to limited coverage of ship-based measurements and the difficulty of validating diverse measurement techniques. Accurate primary productivity measurements from autonomous platforms would be highly desirable, due to much greater potential coverage. In pursuit of this goal we estimate gross primary productivity over two months in the springtime North Atlantic from an autonomous Lagrangian float using diel cycles of particulate organic carbon derived from optical beam attenuation. We test method precision and accuracy by comparison against entirely independent estimates from a locally parameterized model based on chlorophyll a and light measurements from the same float. During nutrient replete conditions (80% of the study period), we obtain strong relative agreement between the independent methods across an order of magnitude of productivities (r2=0.97), with slight under-estimation by the diel cycles method (-19±5 %). At the end of the diatom bloom, this relative difference increases to -58 % for a six-day period, likely a response to SiO4 limitation, which is not included in the model. In addition, we estimate gross oxygen productivity from O2 diel cycles and find strong correlation with diel cycles-based gross primary productivity over the entire deployment, providing further qualitative support to both methods. Finally, simultaneous estimates of net community productivity, carbon export and particle size suggest that bloom growth is halted by a combination of reduced productivity due to SiO4 limitation and increased export efficiency due to rapid aggregation. After the diatom bloom, high chlorophyll a normalized productivity indicates that low net growth during this period is due to increased heterotrophic respiration and not nutrient limitation. These findings represent a significant advance in the accuracy and completeness of upper ocean carbon cycle measurements from an autonomous platform.

3.
Appl Opt ; 52(4): 795-817, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23385922

RESUMO

An inverse algorithm is developed to retrieve hyperspectral absorption and backscattering coefficients from measurements of hyperspectral upwelling radiance and downwelling irradiance in vertically homogeneous waters. The forward model is the azimuthally averaged radiative transfer equation, efficiently solved by the EcoLight radiative transfer model, which includes the effects of inelastic scattering. Although this inversion problem is ill posed (the solution is ambiguous for retrieval of total scattering coefficients), unique and stable solutions can be found for absorption and backscattering coefficients. The inversion uses the attenuation coefficient at one wavelength to constrain the inversion, increasing the algorithm's stability and accuracy. Two complementary methods, Monte Carlo simulation and first-order error propagation, are used to develop uncertainty estimates for the retrieved absorption and backscattering coefficients. The algorithm is tested using both simulated light fields from a chlorophyll-based case I bio-optical model and radiometric field data from the 2008 North Atlantic Bloom Experiment. The influence of uncertainty in the radiometric quantities and additional model parameters on the inverse solution for absorption and backscattering is studied using a Monte Carlo approach, and an uncertainty budget is developed for retrievals. All of the required radiometric and inherent optical property measurements can be made from power-limited autonomous platforms. We conclude that hyperspectral measurements of downwelling irradiance and upwelling radiance, with a single-wavelength measurement of attenuation, can be used to estimate hyperspectral absorption to an accuracy of ±0.01 m(-1) and hyperspectral backscattering to an accuracy of ±0.0005 m(-1) from 350 to 575 nm.

4.
Opt Express ; 19(25): 24986-5005, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273892

RESUMO

We develop two algorithms for determining two inherent optical properties (IOPs) from radiometric measurements in vertically homogeneous waters. The first algorithm is for estimation of the ratio of the backscattering to absorption coefficients from measurements of only the vertically upward radiance and the downward planar irradiance at depths where the light field is in the asymptotic regime. The second algorithm enables estimation of the absorption coefficient from measurement of the diffuse attenuation coefficient in the asymptotic regime after use of the first algorithm. Multiplication of the two estimates leads to an estimate for the backscattering coefficient. The algorithms, based upon the use of a simplified phase function and the asymptotic eigenmode, are shown to potentially provide good starting conditions for iteratively determining the absorption and backscattering coefficients of a wide variety of waters. The uncertainty in the estimates defines a subspace for IOPs that may reduce ambiguity in such iterative solutions. Because of the ease of estimating the backscattering to absorption ratio from in-water measurements, this IOP deserves further investigation as a proxy for biogeochemical quantities in the open ocean.


Assuntos
Algoritmos , Modelos Químicos , Nefelometria e Turbidimetria/métodos , Fotometria/métodos , Água/análise , Água/química , Simulação por Computador , Luz , Espalhamento de Radiação
5.
Science ; 320(5874): 336-40, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18420926

RESUMO

Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the world's oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono , Eucariotos/fisiologia , Fitoplâncton/fisiologia , Atmosfera , Carbonato de Cálcio/análise , Eucariotos/crescimento & desenvolvimento , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...